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The effect of delayed feedback on oscillatory behaviour is investigated for the
classical van der Pol oscillator. It is shown how the presence of delay can change
the amplitude of limit cycle oscillations, or suppress them altogether. The result
is compared to the conventional proportional-and-derivative feedback. The
derivative-like effect of delay is also demonstrated in a modified equation where
a delayed term provides the damping.
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1. INTRODUCTION

One of the classical equations of non-linear dynamics was formulated by and bears
the name of the Dutch physicist van der Pol [1]. Originally it was a model for an
electrical circuit with a triode valve, and was later extensively studied as a host
of a rich class of dynamical behavior, including relaxation oscillations,
quasiperiodicity, elementary bifurcations, and chaos [2–4]. Nevertheless, it is
perhaps best known as a prototype system exhibiting limit cycle oscillations. This
celebrated equation has a non-linear damping term,

ẍ+ o(x2 −1)ẋ+ x= f(t), x$R, oq 0, (1)

which is responsible for energy generation at low amplitudes and dissipation at
high amplitudes. The unforced case (f0 0) is an equation of Liénard type, and
thus can be shown to have a unique periodic solution which attracts all other orbits
except the origin, which is an unstable equilibrium point [4]. Limit cycle
oscillations with such strong stability properties are important in applications;
hence, being able to modify their behavior through feedback is a question of
interest. On the other hand, most practical implementations of feedback have
inherent delays, the presence of which results in an infinite-dimensional system,
thus complicating the analysis. In this study averaging methods are used to
investigate the behavior of the limit cycle of equation (1) when the forcing f is a
delayed feedback of the position x.

Since the limit cycle disappears when o is zero, it is convenient to scale the
parameters by o. Hence, equation (1) will be considered with

f(t)= okx(t− t), (2)

0022–460X/98/470333+07 $30.00/0 7 1998 Academic Press



. . 334

where t is a positive quantity representing the delay and k is the feedback gain.
It is shown in section 2 that both the amplitude and frequency of the oscillations
can be modified by changing the delay and the gain. In particular, it is possible
to reduce the amplitude to zero, thereby preventing oscillations and stabilizing the
origin. To gain more insight into the mechanism of delayed feedback, the results
are compared to the conventional feedback of the state co-ordinates x(t) and ẋ(t).
While derivative feedback can change the amplitude of oscillations (but not the
frequency), position feedback without delay affects only the frequency. Hence, if
the derivative is not available for measurement, delayed feedback of position can
be used to modify the amplitude of oscillations or to stabilize the equilibrium
solution. The derivative-like effect of the delay is further illustrated in section 3
for a modified van der Pol oscillator where delayed position is used to provide the
damping that leads to self-sustained oscillations.

2. DELAY IN FEEDBACK

In what follows, delayed quantities are denoted with the subscript t, e.g.,
xt = x(t− t). Thus, the van der Pol oscillator (1) under delayed feedback (2) is
written in the form

ẍ+ x= og(x, ẋ, xt ), (3)

where

g(x, ẋ, xt )= (1− x2)ẋ+ kxt . (4)

For small values of o, equation (3) can be viewed as a perturbation of the
harmonic oscillator, and can be analyzed by the method of averaging for
delay-differential equations [5]. The nature of oscillations is given by the following
result.

Proposition 1. Suppose k sin tQ 1. Then for each sufficiently small and positive
value of o, (3) has an attracting periodic solution given by

x(t)=2z1− k sin t cos 01−
o

2
k cos t1t+O(o2),

while the zero solution is unstable. If k sin tq 1, then the zero solution is stable.
Proof. To prove the proposition, an amplitude-phase transformation is

introduced

x(t)= r(t) cos (t+ u(t)), ẋ(t)=−r(t) sin (t+ u(t)), (5)

so that equation (3) becomes

ṙ=−o sin (t+ u)g(r cos (t+ u), −r sin (t+ u), rt cos (t− t+ ut )),

ru� =−o cos (t+ u)g(r cos (t+ u), −r sin (t+ u), rt cos (t− t+ ut )). (6)

In the classical method of averaging, one replaces the right sides of this system
of equations with their time averages on an interval of 2p, while treating r and
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u as constants on this interval since they are slowly varying. But since they are
slowly changing, it also makes sense to take r(t− t)1 r(t) and u(t− t)1 u(t).
This heuristic argument can be made rigorous by an application of the averaging
method developed for delay-differential equations [5]. Hence averaging equations
(6) with g given by equation (4) leads to the pair of decoupled ordinary differential
equations

ṙ=−
o

2
r0r2

4
−1+ k sin t1, u� =−

o

2
k cos t. (7)

The equation for r has an equilibrium point at the origin, with eigenvalue
(1− k sin t)o/2. There is another equilibrium at r=2z1− k sin t, provided that
the quantity (1− k sin t) is positive, with the corresponding eigenvalue
−o(1− k sin t). Hence, this equilibrium is stable if it exists. Applying Theorem
3.3 of reference [5] now concludes the proof of the proposition. Q

Of course when k=0 the theorem recovers the familiar limit cycle 2 cos t of the
unforced van der Pol oscillator. By modifying k, the amplitude of the oscillations
can be set arbitrarily, provided sin t$ 0. In particular, the limit cycle oscillations
can be prevented by choosing k sin tq 1. Examples are given in Figure 1, where
the limit cycle has an amplitude of 3, and in Figure 2, where the limit cycle is
annihilated and the zero solution is stable. The numerical calculations are done
with a fourth order Runge–Kutta integrator adapted for delay equations, and they

Figure 1. The convergence of the solutions to the attracting limit cycle. The solid line is the limit
cycle given in Proposition 1, and the dots depict the numerical solution of equation (3) calculated
from an arbitrary initial condition. The parameter values are t=1, o=0·1 and k=−1.
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Figure 2. The stability of the zero solution. Numerically computed solutions of equation (3) are
shown for k=5 (+) and k=7·8 (×). The other parameter values are t=1 and o=0·1. For these
values the limit cycle does not exist, and all solutions die down to zero.

are seen to agree with the analytical results given by Proposition 1. The global
nature of the results are also worth emphasizing. The limit cycle, when it exists,
attracts all trajectories except the origin. Similarly, if the zero solution is stable,
all trajectories are attracted by it.

It is instructive to compare this result to the case of conventional state feedback.
Thus, letting

f(t)= o(k1x(t)+ k2ẋ(t)) (8)

in equation (1), making the change of variables (5), and carrying out the averaging
as usual, one obtains the equations

ṙ=−
o

2
r0r2

4
−1− k21, u� =−

o

2
k1. (9)

It is seen that the feedback of the position affects only the frequency, while the
feedback of the derivative affects only the amplitude of oscillations (up to second
order in o). In particular, it is not possible to change the amplitude with undelayed
position feedback. The presence of the delay allows one to obtain the effects of
derivative feedback using only the position x. The comparison of the two types
of feedback (2) and (8) can be made precise by equating the right sides of equations
(7) and (9). This gives k1 = k cos t and k2 = k sin t. Hence, the delayed feedback
of x(t− t) acts like the state-feedback cos t · x(t)− sin t · ẋ(t) in modifying the
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Figure 3. The limit cycle of the modified van der Pol oscillator (10). The solid line is the limit
cycle given in Proposition 2, and the dots depict the numerical solution calculated from an arbitrary
initial condition. The parameter values are o=0·1 and t=4·6, for which the limit cycle is attracting.

properties of the limit cycle. Note that the naı̈ve estimate x(t− t)1 x(t)− tẋ(t)
based on the Newton quotient for the derivative can lead to totally erroneous
conclusions, except for small values of the delay t.

3. DELAY AS DAMPING

As the delayed position x(t− t) is shown to incorporate some characteristics
of the derivative ẋ(t), one is tempted to explore further the relationship between
the two quantities. It is of interest if, for instance, x(t− t) can provide the
damping in van der Pol’s oscillator that results in self-sustained oscillations.
Hence, consider the modified equation

ẍ+ o(x2 −1)x(t− t)+ x=0, x$R, oq 0. (10)

The limit cycle oscillations for this case are described by the following proposition.
Proposition 2. For each sufficiently small positive value of o, (10) has a periodic

solution given by

x(t)=2 cos (1+ o cos t)t+O(o2),

which is stable if sin tQ 0 and unstable if sin tq 0.
Proof. Equation (10) is again of the form (3) with g given by

g(x, ẋ, xt )= (1− x2)xt . (11)
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Averaging the amplitude-phase equations (6) with this choice of g results in

ṙ=
o

2
r sin t0r2

4
−11, u� =

o

2
cos t034 r2 −11.

The first of these equations has an equilibrium at r=2 whose stability is
determined by the sign of sin t. Integrating the second equation at r=2 leads to
the conclusion of the proposition. Q

Thus, the limit cycle oscillations for equation (10) are very similar to those of
the classical van der Pol oscillator. The stability of the limit cycle depends on the
amount of delay, and a sequence of stability switches occur as t is increased. The
origin is stable whenever the limit cycle is unstable, and vice versa.

4. CONCLUSION

It is shown how to modify or quench the limit cycle oscillations in the van der
Pol oscillator by using delayed position feedback. Without delay, position
feedback cannot change the amplitude of oscillations. The delay thus provides the
effect of a derivative feedback in changing the amplitude. This effect is also seen
in a modified oscillator, where the damping is achieved by a delayed term. In
situations where the derivative is not available for measurement, or its use is not
desirable due to high-frequency noise, delayed position can be a viable alternative
to conventional state feedback in controlling oscillations. For a discussion in the
context of stability of second-order systems, the reader is referred to reference [6].

Delayed feedback has also been used in the control of chaos, where the aim is
to stabilize one of an infinite number of periodic solutions embedded in a chaotic
attractor [7]. There, the existing solution is not changed, but the other trajectories
are led to it by the action of delayed feedback. For this, one needs to have some
knowledge of the periodic solutions (or at least their periods) beforehand.
Although the principle is simple to understand, the analysis of the resulting closed
loop system is difficult and is usually limited to numerical or experimental
simulations. (See reference [8] for the extent of the numerical work required.) For
instance, too small and too large values of the feedback gain can lead to instability,
and these values are not known analytically. The domain of attraction of the
stabilized periodic solution is not known either, and the methods rely on the
recurrence property of the attractor to enter the domain of attraction. To
complicate matters further, the closed loop system can be multistable, and one
may end up with a different regular behaviour than the one intended. All this
indicates the importance of analytical results concerning non-linear systems
controlled by delayed feedback. By illustrating via the specific example of the van
der Pol oscillator how the stability of the resulting oscillations is affected by the
feedback parameters, this paper is hoped to contribute to the efforts in this area.



       339

REFERENCES

1. B.   P 1927 London, Edinburgh, and Dublin Philosphical Magazine 3, 65–80.
Forced oscillations in a circuit with nonlinear resistance (receptance with reactive
triode).

2. J. K. H 1969 Ordinary Differential Equations, New York: Wiley.
3. J. G and P. H 1983 Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. New York: Springer-Verlag.
4. F. V 1990 Nonlinear Differential Equations and Dynamical Systems. Berlin:

Springer-Verlag.
5. J. K. H 1966 Journal of Differential Equations 2, 57–73. Averaging methods for

differential equations with retarded arguments and a small parameter.
6. F. M. A 1997 Proceedings of the 15th International System Dynamics Conference,

Istanbul, Turkey. (Y. Barlas, V. G. Diker and S. Polat, editors), 699–702. Stability,
feedback, and delays.

7. K. P 1992 Physics Letters A 170, 421. Continuous control of chaos by
self-controlling feedback.

8. M. E. B and J. E. S. S 1996 Physics Letters A 210, 87. Stability of periodic
orbits controlled by time-delay feedback.


